
Random Walks, Monte Carlo 
and Errors 

•  What is a simulation? 
•  Monte Carlo, random walks and Markov Chains 
•  Metropolis rejection method 
•  Error estimates 



Quantum Monte Carlo 
•  We need to use simulation techniques to “solve” many-body quantum 

problems just as you need them classically. 
•  Both the wavefunction and expectation values are determined by the 

simulations. Correlation built in from the start. 
•  Based on Feynman’s imaginary time path integrals. 
•  QMC gives most accurate method for general quantum many-body systems.  
•  QMC determined electronic energy is the standard for approximate LDA 

calculations.  (but fermion sign problem!) 
•  Path Integral Methods provide a exact way to include effects of ionic zero 

point motion (include all anharmonic effects) 
•  A variety of stochastic QMC methods: 

–  Variational Monte Carlo VMC (T=0) 
–  Projector Monte Carlo (T=0) 

•  Diffusion MC (DMC) 
•  Reptation MC (RQMC) 

–  Path Integral Monte Carlo  (PIMC)  ( T>0) 
–  Coupled Electron-Ion Monte Carlo  (CEIMC) 





Markov chain MC or Random Walk 
•  Markov chain is a random walk through phase space:  

s1às2 às3 às4 à… 
Here “s” is the state of the system. 

•  ALL QMC is some type of Markov process. VMC is the simplest. 
•  The transition probability is P(snèsn+1)  a stochastic matrix 

•  In a Markov chain, the distribution of sn+1 depends only on sn (by 
definition). A drunkard has no memory! 

•  Let fn(s) be the probability after “n” steps. It evolves according to a 
“master equation.” 

   fn+1(s’)  = Σs fn(s) P(sè s’) 

   fn+1 =P fn 

•  The stationary states are eigenfunctions of P:   P f=ef	
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Ergodicity 
•  Typically simulations are assumed to be ergodic: 

–  after a certain time the system loses memory of its initial state, S0, 
except possibly for certain conserved quantities such as the energy, 
momentum.  

–  The  correlation time κ(which we will define soon) is the number of 
iterations it takes to forget.  

–  If you look at (non-conserved) properties for times much longer κ, 
they are unpredictable as if randomly sampled from some 
distribution. 

–Ergodicity is often easy to prove for the random transition but usually 
difficult for the deterministic simulation.  

The assumption of egodicity is  used for: 
•  Warm up period at the beginning (or equilibration) 
•  To get independent samples for computing errors. 



Metropolis algorithm 
Three key concepts: 

1.  Sample by using an ergodic random walk. 
2.  Determine equilibrium state by using detailed balance. 
3.  Achieve detailed balance by using rejections. 

Detailed balance    π (s) P(s è s’) = π (s’)P (s’ è s ). 
    Rate balance from s to s’. 

Put π (s) into the master equation. (Or sum above Eq. on s.) 

  Σs π (s) P(s è s’)  = π (s’) Σs P (s’ è s ) = π (s’)  
•  Hence,  π(s) is an eigenfunction. 
•  If P(s à s’) is ergodic, π (s) is unique steady state solution. 



Rejection Method 
Metropolis achieves detailed balance by rejecting moves. 
     General Approach:   
    1. Choose distribution to sample, e.g., π(s) = exp[–βH(s)]/Z 
    2. Impose detailed balance on transition: K(sès’) = K(s’ès) 
     where K(sès’) = π(s) P(sès’)      
      (probability of being at s) * (probability of going to s’). 
    3. Break up transition probability into sampling and acceptance: 

  P(sès’) = T(sès’) A(sès’) 
(probability of generating s’ from s) * (probability of accepting move) 

The optimal acceptance probability that gives detailed balance is: 

Normalization of π(s) is not needed or used! 

� 

A(s→ s') =min[1,T (s'→s)π (s')
T (s→s')π (s)

] =min[1, π (s')
π (s)

]

If T is constant! 



The “Classic” Metropolis method 

Metropolis-Rosenbluth2 -Teller2 (1953) method is: 

•  Move from s to s’ with  probability T(sès’)= constant 
•  Accept with move with probability: 

 A(sàs’)= min [ 1 , exp ( - (E(s’)-E(s))/kBT ) ] 
 

•  Repeat many times 

•  Given ergodicity, the distribution of s will be the canonical 

distribution: π(s) = exp(-E(s)/kBT)/Z   

•  Convergence is guaranteed but the rate is not! 



Picture of Metropolis Rejection 
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•  If  ΔE < 0, it lowers the system energy à accept. 
Otherwise  
•  Generate UDRN un on (0,1) 
•  Compare un to e–βΔE:  If un < e–βΔE, accept.  

    If un > e–βΔE, reject.  



How to sample 

S_new = S_old + Δ . (sprng  - 0.5) 

 

Note:  It is more efficient to move one particle at a time  because only the energy 
of that particle comes in and the acceptance ratio will be larger.   

Uniform distribution in a cube  of side “Δ”. 

� 

A(s→ s') = exp[−β(V (s') −V (s))]
= exp[−β (v(ri '−rj ) − v(ri − rj ))

j≠i
∑ ]

For V with cut-off range, difference is local. 



MONTE CARLO CODE 
call initstate(s_old)  
E_old = action(s_old) 
LOOP{ 

 call  sample(s_old,s_new,T_new,1) 
     E_new = action(s_new)  

 call sample(s_new,s_old,T_old,0)  
 A=exp(-E_new+E_old) T_old/T_new 
if(A.gt.sprng()) { 

       s_old=s_new 
               E_old=E_new 
               naccept=naccept+1} 
      call averages(s_old)           } 

Initialize the state 
 
 
Sample snew 
Trial action 
Find prob. of going 

backward  
Acceptance prob. 
 
Accept the move 
Collect statistics 
 
 



•  Always measure acceptance ratio. Adjust ratio to roughly 
0.5 by varying the “step size”.       RULE: 0.1<a.r.<0.9 

•  A 20% acceptance ratio actually achieves better diffusion 
than a 50% acceptance ratio in this example. 



Estimated Errors 
•  In what sense do we calculate exact properties? Answer: if we average long 

enough the error goes to zero, the errors of the simulation are controlled. 
•  Next, how accurate is the estimate of the exact value? 

–  Simulation results without error bars are only suggestive. 
•  Without error bars one has no idea of its significance. 
•  You should understand formulas and be able to make an “eye-

ball” estimate. 
•  Error bar:  the estimated error in the estimated mean. 

–  Error estimates based on Gauss’ Central Limit Theorem. 
–  Average of statistical processes has normal (Gaussian) distribution.  
–  Error bars: square root of the  variance of the distribution divided by 

the number of uncorrelated steps. 

Histogram of  E 



Central Limit Theorem (Gauss) 
Sample N independent values from F*(x)dx, i.e. (x1, x2, x3,… ,xN). 
Calculate mean as   y = (1/N)∑ xi.  
What is the pdf of mean?  Solve by fourier transforms 
 
Characteristic function: 
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Cumulants:  Mean = κ1 Variance= κ2 Skewness = κ3 Kurtosis= κ4  
The n=1 moment remains invariant but the rest get reduced by higher powers of N. 

Given enough averaging almost anything becomes a Gaussian 
distribution. 

2 3 2
1 2 3/ 2 /6 ...lim ( ) ik k N ik N

N yc k e κ κ κ− −
→∞ =

2
1/ 2 1 2

2
2

( )( ) ( / 2 ) exp    standard error(y)= =
2

N yP y N
N

κ κ
πκ σ

κ
⎡ ⎤−

= −⎢ ⎥
⎣ ⎦



Approach to normality 



Conditions on Central Limit Theorem 

•  We need the first three moments to exist. 
–  If I0  is not defined è not a pdf 
–  If I1 does not exist è not mathematically well-posed. 
–  If I2 does not exist è infinite variance.  
–  Important to know if variance is finite for simulations. 

•  Divergence could happen because of tails of distribution 

 We need: 

•  OR Divergence because of singular behavior of F* at finite x: 
  

We need:  
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Estimating Errors 

•  Uncorrelated data 

•  Correlated data 

•  Problem: how to cut off the summation for κ. 
•  Blocking method: average together data in blocks longer than the 

correlation time until it is uncorrelated. 
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Correlated data    Uncorrelated data 



Estimate of errors 
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Statistical vs. Systematic Errors 
•  What are statistical errors? 

–  Statistical error measures the distribution of the averages about their avg. 
–  Statistical error can be reduced by extending or repeating runs, increase N. 
          

•  The efficiency is how we measure the rate of convergence of the 
statistical errors. 

–  It depends on the computer, the algorithm, the property etc.  But not on the 
length of the run. 

•  What are systematic errors ? 
–  Systematic error measures the other errors. Even if you sample forever the 

systematic errors remain constant. 
–   Systematic error is caused by round-off error, non-linearities, bugs, non-

equilibrium, etc. 
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Statistical Vocabulary 

·  Trace of A(t):  

·  Equilibration time.  

·  Histogram of values of A ( P(A) ).  

·  Mean of A (a).  

·  Variance of A ( v ).  

·  estimate of the mean:     ΣA(t)/N 

·  estimate of the variance  

·  Autocorrelation of A (C(t)). 

·  Correlation time k .  

·  The (estimated) error of the (estimated) mean (s ).  

·  Efficiency [= 1/(CPU time * error 2)] 



Statistical thinking is slippery: be careful 

•  “Shouldn’t the energy settle down to a constant”  
–  NO. It fluctuates forever.  It is the overall mean which converges. 

•  Because data is correlated, the central limit theorem is invalid 
•  “The cumulative energy has converged”. 

–  BEWARE. Even pathological cases have smooth cumulative energy 
curves. 

•  “Data set A differs from B by 2 error bars. Therefore it must be 
different”.   
–  This is normal in 1 out of 10 cases. If things agree too well, something is 

wrong! 
•  “My procedure is too complicated to compute errors” 

–  NO! Run your whole code 10 times and compute the mean and variance 
from the different runs. If a quantity is important, you MUST estimate its 
errors. 



Recap: problems with estimating errors 
•  Any good simulation quotes systematic and statistical errors for 

anything important.  

•  The error and mean are simultaneously determined from the  same 
data.  HOW? 

•  Central limit theorem: the distribution of an average approaches a 
normal distribution (if the variance is finite).  
–  One standard deviation means ~2/3 of the time the correct answer is 

within σ  of the sample average.  

•  Problem in simulations is that data is correlated in time.  
–  It takes a “correlation” time κ to be “ergodic”  
–  Correction errors for autocorrelation. 
–   throw away the initial transient. 

•  We need about 25 independent data points to estimate errors. (so that 
the error of the error is only  1/sqrt(N)= 20%) 


